En informàtica, la teoria de l'aprenentatge computacional (o simplement teoria de l'aprenentatge) és un subcamp de la intel·ligència artificial dedicat a estudiar el disseny i l'anàlisi d'algoritmes d'aprenentatge automàtic.[1]
Els resultats teòrics de l'aprenentatge automàtic tracten principalment d'un tipus d'aprenentatge inductiu anomenat aprenentatge supervisat. En l'aprenentatge supervisat, es donen mostres a un algorisme que s'etiqueten d'alguna manera útil. Per exemple, les mostres podrien ser descripcions de bolets i les etiquetes podrien indicar si els bolets són comestibles o no. L'algorisme pren aquestes mostres etiquetades anteriorment i les utilitza per induir un classificador. Aquest classificador és una funció que assigna etiquetes a mostres, incloses mostres que no s'han vist prèviament per l'algorisme. L'objectiu de l'algorisme d'aprenentatge supervisat és optimitzar alguna mesura del rendiment, com ara minimitzar el nombre d'errors comesos en mostres noves.[2]
A més dels límits de rendiment, la teoria de l'aprenentatge computacional estudia la complexitat temporal i la viabilitat de l'aprenentatge. En la teoria de l'aprenentatge computacional, un càlcul es considera factible si es pot fer en temps polinomial. Hi ha dos tipus de resultats de complexitat temporal:
Els resultats negatius sovint es basen en supòsits comuns, però encara no provats, com ara:
Hi ha diversos enfocaments diferents a la teoria de l'aprenentatge computacional basats en fer diferents supòsits sobre els principis d'inferència utilitzats per generalitzar a partir de dades limitades. Això inclou diferents definicions de probabilitat (vegeu probabilitat de freqüència, probabilitat bayesiana) i diferents supòsits sobre la generació de mostres. Els diferents enfocaments inclouen: